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Introduction Introduction

Introduction 1 (Problem)

In this talk we consider the following d-dimensional SDE:

dXt = b(t,Xt)dt + σ(t ,Xt)dWt . (1)

where b(t , x), σ(t , x) are suitable functions and Wt is a Brownian
motion.

We would like to consider a weak convergence rate of ( 1) with a
discontinuous drift coefficient b(t , x).

For simplicity, we split the interval [0,T ] equally in n subintervals and
let the length of each time subinterval ∆t be equal to T

n .

We say that an approximation process X̄T weakly converges to XT

with order γ if ∣∣∣∣E [f (XT )] − E
[
f
(
X̄T

)]∣∣∣∣ ≤ C∆tγ.

holds for every f in a certain class.
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Introduction Introduction

Introduction 2 (Previous studies: continuous coeff.)

When we use the Euler-Maruyama approximation as the
approximation process X̄T , then the following result has been known.

For α ∈ (0, 1) ∪ (1, 2) ∪ (2, 3), let H(α)
T be the Hölder space on

[0,T ] × Rd and H(α) be also the Hölder space on Rd .

If b , σσ∗ ∈ H(α)
T and f ∈ H(2+α) for some α ∈ (0, 1) ∪ (1, 2) ∪ (2, 3),

there exists some positive constant K such that∣∣∣∣E [f (XT )] − E
[
f
(
X̄T

)]∣∣∣∣ ≤ K

nE(α)
,

where

E(α) =


α
2 , α ∈ (0, 1), ← 0 ∼ 1

2
1

3−α , α ∈ (1, 2), ← 1
2 ∼ 1

1, α ∈ (2, 3).

For more details, see Mikulevicius and Platen [5] or a book of
Kloeden and Platen [3].
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Introduction Introduction

Introduction 3 (Previous studies: dis continuous coeff.)

In this talk, we are interested in a discontinuous drift coefficient
b(t , x).
Some results of weak convergence of SDE with discontinuous (drift
and diffusion ) coefficient and the Euler-Maruyama approximation:

I Chan, Stramer (1998) [1]:

dX(t) = b(X(t))dt + σ(X(t))dW(t).

If b , σ are piecewise continuous and locally bounded, then the
Euler-Maruyama approximation weakly converges. Note that they do
not mention about the rate.

I Yan (2002) [9]:

dX(t) = b(t ,X(t))dt + σ(t ,X(t))dW(t).

If b , σ have that the set of all discontinuous points has measure 0
and linear growth, then the Euler-Maruyama approximation weakly
converges. Note that they do not mention about the rate, neither.
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Main Theorem Settings, Assumptions and Results

Settings and Assumptions 1 (Original SDE)

Let a fixed T > 0.

σ(t , x) : d × d-symmetric matrix value uniformly continuous
function on [0,T ] × Rd , and there exist some positive constants
Λ ≥ λ > 0 such that for all (t , x) ∈ [0,T ] × Rd and ξ ∈ Rd ,

λ|ξ|2 ≤ ξ∗a(t , x)ξ ≤ Λ|ξ|2,

where set a(t , x) = σσ∗(t , x).

b(t , x) : d-dimensional measurable function on [0,T ] × Rd , and for
all (t , x) ∈ [0,T ] × Rd , |b(t , x)| ≤ Λ holds.

Then the SDE (1) has a weak solution.

CSl(R
d) : a class of all continuous function f such that for all k > 0,

lim
|x |→∞

|f(x)|e−k |x |2 = 0.
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Main Theorem Settings, Assumptions and Results

Settings and Assumptions 2 (Approximation)

Let ε > 0.

bε(t , x)： d-dimensional measurable function on [0,T ] × Rd , and for
all (t , x) ∈ [0,T ] × Rd , |b(t , x)| ≤ Λ holds.
=⇒ Later we assume Hölder continuity or smoothness as necessary.

Then we consider the following SDE:

dXεt = x +

∫ t

0
bε (s,X

ε
s )ds +

∫ t

0
σ (s,Xεs ) dBs .

The drift coefficient b(t , x) is replaced by bε(t , x).

We consider the Euler-Maruyama approximation of Xεt with ∆t = T
n ：

X̄εt = x +

∫ t

0
bε

(
φ(s), X̄ε

φ(s)

)
ds +

∫ t

0
σ

(
φ(s), X̄ε

φ(s)

)
dBs ,

where φ(s) = sup{t ≤ s|t = k
n for k ∈ N}.
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Main Theorem Settings, Assumptions and Results

Theorem 1
.
Theorem
..

.

. ..

.

.

We assume that for γ, β, δ > 0, the following two inequalities hold:

(i). for γ > 0,
∣∣∣∣E [f (XT )] − E

[
f
(
XεT

)]∣∣∣∣ = O (εγ),

(ii). and for β, δ > 0,
∣∣∣∣E [

f
(
XεT

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ = O

(
1

εβnδ

)
.

Then for ε = O(n−
δ
γ+β ), the following holds：∣∣∣∣E [f(XT )] − E

[
f
(
X̄εT

)]∣∣∣∣ ≤ O
(
n−

δγ
γ+β

)
.

Remark:
Note that X̄εT is NOT the direct Euler-Maruyama approximation of XT .

When ε = n−
δ
γ+β , the following holds：

1

εβnδ
= n−

δγ
γ+β

n→∞−→ 0.
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Main Theorem Settings, Assumptions and Results

Proposition 1 (About assumption (i))

On the assumption (i) in Theorem:
.
Proposition
..

.

. ..

.

.

For some α, p > 2 such that 1
α + 1

p <
1
2 , and all f ∈ CSl(R

d), we have∣∣∣∣E [f(XT )] − E
[
f
(
XεT

)]∣∣∣∣ ≤ C(α, p,T)AT (ε)
√

Var(f(XT )),

where set

C(α, p,T) = T
1
2−

1
p exp

TΛλ−1

α − 1
2

+

(
1 − 2
α

) α( 1
2 + 1

p ) − 1

α( 1
2 −

1
p ) − 1


 ,

AT (ε)= E

[∫ T

0

∣∣∣bε(s,Ys) − b(s,Ys)
∣∣∣p ds

] 1
p

,

where Yt is a weak solution of Yt = x +
∫ t

0
σ(s,Ys)dWs .
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Main Theorem Settings, Assumptions and Results

Remark 1 (About AT(ε))

.
Remark
..

.

. ..

.

.

If the transition density function p(t , x, y) of Yt has a Gaussian upper
estimation, then for every 1 < r , q ≤ ∞ such that d

2r + 1
q < 1, we have

AT (ε) ≤ C3


∫ T

0

(∫
Rd

∣∣∣b(s, y) − bε(s, y)
∣∣∣pq

dy

) r
q

ds


1
rp

.

A rate of convergence depends on a kind of Lp-error between b and
bε. When a = σσ∗ ∈ H

α
2 ,α([0,T ] × Rd) (α > 0) holds, it has a

Gaussian upper estimation.

Even if it does NOT have a Gaussian upper estimation, from bounded
and uniformly elliptic assumptions, we have the following when
b(t , x) = b(x),

AT (ε) ≤ C(λ,Λ)eT‖b − bε‖Ldp .
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Main Theorem Settings, Assumptions and Results

Proposition 2 (About assumption (ii) )

On the assumption (ii) in Theorem:
When we adopt a Hölder continuous function as bε, we can use
the following result (which was mentioned before). For example, a
broken line approximation is in this case.

.
Proposition
..

.

. ..

.

.

(Mikulevicius and Platen [5]) If bε, σσ∗ ∈ H(α)
T and f ∈ H(2+α) for some

α ∈ (0, 1) ∪ (1, 2) ∪ (2, 3), there exists some positive constant K such that∣∣∣∣E [
f
(
XεT

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ ≤ K

nE(α)
,

where

E(α) =


α
2 , α ∈ (0, 1), ← 0 ∼ 1

2
1

3−α , α ∈ (1, 2), ← 1
2 ∼ 1

1, α ∈ (2, 3).

Note that the constant K linearly depends on ‖bε‖Hα .
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Main Theorem Settings, Assumptions and Results

Proposition 3 (About assumption (ii) )

When b is quite complicate and we use a mollifier (smooth
approximation ) as bε, then

.
Proposition
..

.

. ..

.

.

Let f ∈ C3(Rd) ∩ CSl(R
d) and bε, σ ∈ C1,3

b ([0,T ] × Rd). Then we have∣∣∣∣E [
f
(
XεT

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ ≤ C
n
‖bε‖3,∞,

where C is a positive constant and ‖bε‖3,∞ is defined as follows:

‖bε‖3,∞ =
3∑

j=0

∥∥∥∥b(j)
ε

∥∥∥∥∞ .
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Main Theorem Settings, Assumptions and Results

Example (Indicator function)
.
Remark
..

.

. ..

.

.

Set d = 1, b(t , x) = 1[ζ1,ζ2](x) (ζ1 < ζ2) and

ζ1 ζ2ζ1 − 2ε ζ2 + 2ε

b(x)

bε(x)
bε(x) =


1
2εx −

ζ1−2ε
2ε , [ζ1 − 2ε, ζ1),

− 1
2εx + ζ2+2ε

2ε , (ζ2, ζ2 + 2ε],
1, [ζ1, ζ2],
0, Otherwise.

(broken line approximation)

Assumption (i): For p > 2, we have{∫ ∞

−∞
|bε(x) − b(x)|pdx

} 1
p

= O(ε
1
p ).

Assumption (ii) : The rate of the divergence is ‖bε‖Hα = O(ε−1).

An optimal rate of ε is ε = O(n−
p

2(1+p) ).
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Main Theorem Settings, Assumptions and Results

Settings and Assumptions 3 (Constant diffusion coeff.)

Now we assume that σ(t , x) is a constant matrix (Here unit-matrix)
and b(t , x) = b(x) is time-homogeneous.
That is, we consider the following SDE:

Xt = x +

∫ t

0
b(Xs)ds + Bt .

Xεt : The solution of SDE with an approximated drift bε(x).
X̄εt : The Euler-Maruyama approximation of Xεt .
The Euler-Maruyama approximation of Xt :

X̄t = x +

∫ t

0
b

(
X̄φ(s)

)
ds + Bt .

Until the previous slide, we consider about weak approximation
between Xt and X̄εt which is NOT the direct Euler-Maruyama
approximation of Xt . Now as the approximation X̄t of Xt , we consider
the direct Euler-Maruyama approximation of Xt .
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Main Theorem Settings, Assumptions and Results

Lemmas

.
Lemma
..

.

. ..

.

.

For p > 2 ∨ d, there exists some positive constant C1(p,Λ,T) such that∣∣∣∣E [f (XT )] − E
[
f
(
XεT

)]∣∣∣∣ ≤ C1(p,Λ,T)
√

Var(f(x + BT ))‖b − bε‖Lp .

.
Lemma
..

.

. ..

.

.

For p > 2, there exists some positive constant C2(p,Λ,T) such that∣∣∣∣E [
f
(
X̄T

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ ≤ C2(p,Λ,T)
√

Var(f(x + BT ))‖b − bε‖Lp .

The both lemmas are similar results to Proposition 1.

We use a happy property of the Euler-Maruyama approximation in the
case of the constant diffusion coefficient:

∑n
i=1(Bi∆t − B(i−1)∆t) = BT .
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Main Theorem Settings, Assumptions and Results

Proposition 4

.
Proposition
..

.

. ..

.

.

(Theorem 1 in Mackevičius [4]) Let bε be a bounded and Lipschitz
continuous function with constant Lip(bε) and f be in C3

p (Rd). Then there
exists some positive constant C(T ,Λ, f) such that∣∣∣∣E [

f
(
XεT

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ ≤ C(T ,Λ, f)

n
Lip(bε).

In the paper of Mackevičius [4], the boundedness of bε is not
assumed.

Notations:

For a set G in Rd , we define G(ε) = {x ∈ Rd |d(x,G) ≤ ε}, where
d(x,G) = infy∈G |x − y | is the distance between x and G.

By summing up the above results, we have the following theorem.

Kazuhiro YASUDA (Hosei University) Weak Approx SDE with Disconti Drift 8 Mar. 2012 18 / 42



. . . . . .

Main Theorem Settings, Assumptions and Results

Theorem 2

.
Theorem
..

.

. ..

.

.

Let b be a bounded measurable function on Rd which is Lipschitz except
on a set G such that the Lebesgue measure meas(G(ε)) = O(εd). Then
for any f ∈ C3

p (Rd) and p > d ∨ 2, we have∣∣∣∣E [f(XT )] − E
[
f
(
X̄T

)]∣∣∣∣ = O
(
n−

d
p+d

)
.

.
Remark
..

.

. ..

.

.

An optimal size of ε is ε = O(n−
p

d+p ), where we assume

Lip(bε) = O(ε−1) and ‖b − bε‖Lp = O(ε
d
p ).

From the theorem, we find that if p → 2 and d = 1, the rate of the
weak convergence is order 1

3 . Note that for α ∈ (0, 1) (Hölder
continuous case), the result in Kloeden and Platen [3] is the order 1

2 .
(where in their case, σ is also α−Hölder continuous.)
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Numerical Experiments Numerical Experiments

Numerical Experiments 1

We consider the following SDE (d = 1):

Xt = x +

∫ t

0
b(Xs)ds + Bt , whereb(x) =

{
θ1, x ≤ 0,
θ0, x > 0.

From Karatzas and Shreve [2], we have a representation of the
transition density function of Xt .

If θ1 = −θ0 > 0 and x = 0, the distribution of Xt is symmetric. And if f
is an odd function, we have E[f(Xt)] = 0.

As bε, we use

bε(x) =


θ1, x ≤ −ε,
θ0−θ1

2ε x + θ0+θ1
2 , −ε < x ≤ ε,

θ0, x > ε.

Here we adopt ε = n−
2
3 from the previous slide.
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Numerical Experiments Numerical Experiments

Numerical Experiments 2

We consider two types of errors:
I |E[f(XT )] − E[f(X̄T )]|: thin line in all graphs below.
I |E[f(XT )] − E[f(X̄εT )]|: dotted line in all graphs below.

Let T = 1, θ1 = −θ0 = 1 and X0 = 0.

We use 107 times Monte-Carlo simulations to E[f(X̄1)] and E[f(X̄ε1)]
each time step n.

First Example: f(x) = x.
I True value: E[f(X1)] = 0 from the odd function f and the initial value

X0 = 0.

Second Example: f(x) = x2.
I True value: E[f(X1)] = 0.333369 which is analytically obtained.

Third Example: f(x) = 1(x > 0) − 1(x ≤ 0). (This is outside of our
theorem.)

I True value: E[f(X1)] = 0 from the odd function f a.e. and the initial
value X0 = 0.
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Numerical Experiments Numerical Experiments

Numerical Experiments 3: f(x) = x
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Numerical Experiments Numerical Experiments

Numerical Experiments 4: f(x) = x2
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Numerical Experiments Numerical Experiments

Numerical Experiments 5: f(x) = 1(x > 0) − 1(x ≤ 0)

 1e-005

 0.0001

 0.001

 0.01

 0.1

 10  100

E
rr

o
r 

(l
o

g
-s

c
a

le
)

Number of time steps (log-scale)

Weak convergence rate (f(x)=indicator)

Euler-Maruyama
Approximation

Gradient  -1

Kazuhiro YASUDA (Hosei University) Weak Approx SDE with Disconti Drift 8 Mar. 2012 25 / 42



. . . . . .

Proofs Proofs

Contents

.
. .1 Introduction

Introduction

.
. .2 Main Theorem

Settings, Assumptions and Results

.
. .3 Numerical Experiments

Numerical Experiments

.
. .4 Proofs

Proofs

.
. .5 Reference

Reference

Kazuhiro YASUDA (Hosei University) Weak Approx SDE with Disconti Drift 8 Mar. 2012 26 / 42



. . . . . .

Proofs Proofs

Proposition 1

On the assumption (i) in Theorem:
.
Proposition
..

.

. ..

.

.

For some α, p > 2 such that 1
α + 1

p <
1
2 , and all f ∈ CSl(R

d), we have∣∣∣∣E [f(XT )] − E
[
f
(
XεT

)]∣∣∣∣ ≤ C(α, p,T)AT (ε)
√

Var(f(XT )),

where set

C(α, p,T) = T
1
2−

1
p exp

TΛλ−1

α − 1
2

+

(
1 − 2
α

) α( 1
2 + 1

p ) − 1

α( 1
2 −

1
p ) − 1


 ,

AT (ε)= E

[∫ T

0

∣∣∣bε(s,Ys) − b(s,Ys)
∣∣∣p ds

] 1
p

,

where Yt is a weak solution of Yt = x +
∫ t

0
σ(s,Ys)dWs .
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Proofs Proofs

Proof of Proposition 1 (1)

We define Zt as

Zt = exp

(∫ t

0
γ(s,Xs)dBs −

1
2

∫ t

0
γγ∗(s,Xs)ds

)
,

where set γ(s, x) = (bε(s, x) − b(s, x))∗σ−1(s, x).
.
Lemma
..

.

. ..

.

.

Set γ̂ = sups∈[0,T ],x∈Rd |γ(s, x)|. For α > 1, we have

E
[
ZαT

] 1
α ≤ exp

((
α − 1

2

)
γ̂2T

)
. (2)

Proof. Set Mt =
∫ t

0
γ(s,Xs)dBs . From the Schwarz inequality,

E
[
ZαT

]
≤ E

[
exp

(
2αMT −

4α2

2
< M >T

)] 1
2

E
[
exp

(
(2α2 − α) < M >T

)] 1
2 .

We obtain the consequence from the exponential martingale and
< M >T≤ γ̂2T . �
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Proofs Proofs

Proof of Proposition 1 (2)

Set L =
d∑

i,j=1

1
2

ai,j
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
.

We consider the following Cauchy problem:
∂u(t , x)

∂t
+ Lu(t , x) = 0, on [0,T) × Rd ,

u(T , x) = f(x), on Rd ..
Lemma
..

.

. ..

.

.

(Lemma 1 and Corollary, Veretennikov [8]) We have the following
representation and estimation by using the solution u:

(i). f(XT ) = u(0,X0) +

∫ T

0
∇u(s,Xs)σ(s,Xs)dBs ,

(ii). E

[∫ T

0
|∇u(s,Xs)|2ds

]
≤ Var(f(XT )).

About existence and uniqueness, see Theorem 3 and 3′ in [8].
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Proofs Proofs

Proof of Proposition 1 (3)

From Girsanov theorem、E
[
f
(
XεT

)]
= E [ZT f(XT )].

Zt follows to Zt = 1 +

∫ t

0
Zsγ(s,Xs)dBs .

From the previous Lemma (i) and martingale property of Zt ,

|∆| =
∣∣∣∣E [

f
(
XεT

)]
− E [f (XT )]

∣∣∣∣ = ∣∣∣E [(ZT − 1) f (XT )]
∣∣∣

=

∣∣∣∣∣∣E
[
ZT

∫ T

0
(bε(s,Xs) − b(s,Xs))∇u(s,Xs)ds

]∣∣∣∣∣∣
≤ E

[
ZαT

] 1
α︸   ︷︷   ︸

Lemma

E


(∫ T

0
|(bε − b)(s,Xs)|2ds

) α′
2−α′


2−α′
2α′

E

[∫ T

0
|∇u(s,Xs)|2ds

] 1
2

︸                          ︷︷                          ︸
Lemma(ii)

.

We use Girsanov theorem to the middle term and similar arguments
again. Then we obtain the term related to AT (ε). �
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Proofs Proofs

Proposition 3

.
Proposition
..

.

. ..

.

.

Let f ∈ C3(Rd) ∩ CSl(R
d) and bε, σ ∈ C1,3

b ([0,T ] × Rd). Then we have∣∣∣∣E [
f
(
XεT

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ ≤ C
n
‖bε‖3,∞,

where C is a positive constant and ‖bε‖3,∞ is defined as follows:

‖bε‖3,∞ =
3∑

j=0

∥∥∥∥b(j)
ε

∥∥∥∥∞ .
Note that we consider the Euler-Maruyama approximation with ∆t = T

n .

Kazuhiro YASUDA (Hosei University) Weak Approx SDE with Disconti Drift 8 Mar. 2012 31 / 42



. . . . . .

Proofs Proofs

Proof of Proposition 3 (1)

Proof.

Define

Ẑbε
t =

∫ t

0
b∗εσ

−1(s,Ys)dWs −
1
2

∫ t

0
b∗εa

−1bε(s,Ys)ds,

Z̃bε
t =

∫ t

0
b∗εσ

−1(φ(s), Ȳφ(s))dWs −
1
2

∫ t

0
b∗εa

−1bε(φ(s), Ȳφ(s))ds,

where Wt is a Brownian motion and

Yt = x +

∫ t

0
σ(s,Ys)dWs , Ȳt = x +

∫ t

0
σ

(
φ(s), Ȳφ(s)

)
dWs .

L̂bε(Yt) ∼ L(Xεt ) and L̃bε(Ȳt) ∼ L(X̄εt ) hold.

Set g(y, z) = exp(z)f(y). Then

E
[
f
(
XεT

)]
− E

[
f
(
X̄εT

)]
= E

[
g
(
YT , Ẑ

bε
T

)]
− E

[
g
(
ȲT , Z̃

bε
T

)]
.
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Proofs Proofs

Proof of Proposition 3 (2)

　　 By using Taylor expansion,

= E
[
∇g

(
θYT + (1 − θ)ȲT , θẐ

bε
T + (1 − θ)Z̃bε

T

) (
YT − ȲT

)]
(3)

+ E
[
∂zg

(
θ′YT + (1 − θ′)ȲT , θ

′Ẑbε
T + (1 − θ′)Z̃bε

T

) (
Ẑbε

T − Z̃bε
T

)]
,

　　 where θ, θ′ ∼ U(0, 1) are independent of each other.

Et = Yt − Ȳt is written as follows:

Et =

∫ t

0
αsEsdWs +

∫ t

0
GsdWs

⇒ Et = Ut

∫ t

0
U−1

s GsdWs − Ut

∫ t

0
U−1

s α(s)Gsds,

where set Gs = σ(s, Ȳs) − σ(φ(s), Ȳφ(s)) and

Ut = 1 +

∫ t

0
αsUsdWs , αs =

∫ 1

0
∂xσ(s, ξYs + (1 − ξ)Ȳs)dξ.
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Proofs Proofs

Proof of Proposition 3 (3)

Consider the first term of (3). (the rests are similar)

E

∇g
(
θYT + (1 − θ)ȲT , θẐ

bε
T + (1 − θ)Z̃bε

T

)︸                                                  ︷︷                                                  ︸
=F

ET


= E

[
F

{
UT

∫ T

0
U−1

s GsdWs − UT

∫ T

0
U−1

s α(s)Gsds

}]
.

By Taylor expansion, Gs is written as

Gs =

∫ s

φ(s)
∂tσ

(
u, Ȳs

)
du

(
→≤ M

n

)
+

∫ 1

0
∇σ

(
φ(s), βȲs + (1 − β)Ȳφ(s)

)
· σ

(
φ(s), Ȳφ(s)

) ∫ s

φ(s)
dWudβ.

By using the dual formula in the Malliavin calculus to the part∫ s

φ(s)
dWu, the second term also has M

n . �
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Proofs Proofs

Lemmas

.
Lemma
..

.

. ..

.

.

For p > 2 ∨ d, there exists some positive constant C1(p,Λ,T) such that∣∣∣∣E [f (XT )] − E
[
f
(
XεT

)]∣∣∣∣ ≤ C1(p,Λ,T)
√

Var(f(x + BT ))‖b − bε‖Lp .

　 The proof is the similar to the following lemma. �

.
Lemma
..

.

. ..

.

.

For p > 2, there exists some positive constant C2(p,Λ,T) such that∣∣∣∣E [
f
(
X̄T

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ ≤ C2(p,Λ,T)
√

Var(f(x + BT ))‖b − bε‖Lp .
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Proofs Proofs

Proof of Second Lemma (1)

Proof.
Set β(s) = b(x + Bφ(s)), βε(s) = bε(x + Bφ(s)) and define

Zt = 1 +

∫ t

0
Zsβ(s)dBs , Zεt = 1 +

∫ t

0
Zεsβε(s)dBs .

Zt − Zεt is written as follows:

Zt − Zεt =

∫ t

0
(Zs − Zεs )β(s)dBs +

∫ t

0
Zεs (β(s) − βε(s))dBs .

Then from (a + b)2 ≤ 2a2 + 2b2, we have

∆t = E
[∣∣∣Zt − Zεt

∣∣∣2] ≤ 2Λ2
∫ t

0
∆sds + 2E

[∫ t

0
Zεs (β(s) − βε(s))2ds

]
.

From (2), the second term in the RHS satisfies the following:
(C(p,Λ,T) is some positive constant)

E

[∫ T

0
Zεs (β(s) − βε(s))2ds

]
≤ C(p,Λ,T)E

[∫ T

0
|β(s) − βε(s)|pds

] 2
p

.
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Proofs Proofs

Proof of Second Lemma (2)

By the Gronwall’s inequality,

∆T ≤ C(p,Λ,T)e2Λ2T E

[∫ T

0
|β(s) − βε(s)|pds

] 2
p

.

By using the similar argument to Proposition 1, we have: (α, p > 2、
1
α + 1

p <
1
2 )∣∣∣∣E [
f
(
X̄T

)]
− E

[
f
(
X̄εT

)]∣∣∣∣
=

∣∣∣∣E [ZT f (x + BT )] − E
[
ZεT f (x + BT )

]∣∣∣∣
≤ C(α, p,Λ,T)E

[∫ T

0
|β(s) − βε(s)|pds

] 1
p √

Var(f(x + BT )).

By using an upper Gaussian estimation to the middle term, we have:
(γ > 1)

E

[∫ T

0

∣∣∣(b − bε)(x + Bφ(s))
∣∣∣p ds

]
≤ C ′(T , γ)‖b − bε‖p

L
pγ
γ−1

�
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Proofs Proofs

Theorem 2

.
Theorem
..

.

. ..

.

.

Let b be a bounded measurable function on Rd which is Lipschitz except
on a set G such that the Lebesgue measure meas(G(ε)) = O(εd). Then
for any f ∈ C3

p (Rd) and p > d ∨ 2, we have∣∣∣∣E [f(XT )] − E
[
f
(
X̄T

)]∣∣∣∣ = O
(
n−

d
p+d

)
.

.
Proposition
..

.

. ..

.

.

(Theorem 1 in Mackevičius [4]) Let bε be a bounded and Lipschitz
continuous function with constant Lip(bε) and f be in C3

p (Rd). Then there
exists some positive constant C(T ,Λ, f) such that∣∣∣∣E [

f
(
XεT

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ ≤ C(T ,Λ, f)

n
Lip(bε).
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Proofs Proofs

Proof of Theorem 2

Proof.

From the previous Proposition and two lemmas, for p > 2,∣∣∣∣E [f(XT )] − E
[
f
(
X̄T

)]∣∣∣∣
≤

∣∣∣∣E [f(XT )] − E
[
f
(
XεT

)]∣∣∣∣ + ∣∣∣∣E [
f
(
XεT

)]
− E

[
f
(
X̄εT

)]∣∣∣∣ + ∣∣∣∣E [
f
(
X̄εT

)]
− E

[
f
(
X̄T

)]∣∣∣∣
≤ C(p,Λ,T)

√
Var(f(x + BT ))‖b − bε‖Lp +

C(Λ,T , f)

n
Lip(bε).

From Lip(bε) = O(1
ε ) and ‖b − bε‖Lp = O(ε

d
p ), we have∣∣∣∣E [f(XT )] − E

[
f
(
X̄T

)]∣∣∣∣ ≤ C
nε

+ C ′ε
d
p .

An optimal choice of ε is ε = O(n−
p

d+p ) and we obtain our
consequence. �
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